

NPP Sensor Data Overview

Dr. Fuzhong Weng JPSS Sensor Science Chair Center for Satellite Applications and Research (STAR) NOAA/NESDIS

IGARSS 2011, NPP User's Workshop July 24, 2011

PRESIDENTIAL DECISION

NPOESS program was terminated on 30 September 2010.

- NOAA assigned 1330 orbit
 - Joint Polar Satellite System (JPSS)
- DoD assigned 0530 orbit
 - Defense Weather Satellite System (DWSS)
- EUMETSAT provides 0930 orbit
 - -Meteorological Operational Satellite System
- Common Ground System (CGS)
 - Systems developed for JPSS/DWSS/GCOM etc
- Advanced Sensors on JPSS
 - VIIRS (MODIS heritage)
 - CrIS (AIRS/IASI heritage)
 - OMPS (OMI/TOMS heritage)
 - ATMS (AMSU/MHS heritage)

National Environmental Satellite, Data, and Information Price NPP Spacecraft and Payloads

пояя

JPSS Program Concept Review JPSS L1RD Defined Environmental Data Records (EDRs)

4

Sensor Science Working Group

Recent JPSS SSWG Activities

- SDR teams were inaugurated in December, 2010 after the approval of JPSS program and JPSS ground project senior management with recommended team leads
- Conduct Weekly Telecons with JPSS program stakeholders (mainly SDR):
 - ✓ NOAA
 - ✓ NASA
 - ✓ Raytheon
 - ✓ ITT
 - ✓ BALL
 - ✓ NGAS, NGES etc,
- Major Activities
 - ✓ Participate NPP launch readiness rehearsal
 - ✓ Review IDPS SDR code readiness for NPP launch
 - ✓ Provide independent assessments of NGAS deliverables (e.g. LUTs/coeff.)
 - ✓ Analyze NPP S/C TVAC data
 - ✓ Perform post-launch instrument cal/val
 - ✓ Established STAR ICVS for NPP LTM with initial trending of TVAC data

NPP IDPS SDR Processing Readiness (Mx5 Version)

• SDRs

- VIIRS Yes
- CrIS Yes
- ATMS Yes
- ATMS Remap Yes
- OMPS TC No (Mx6 Science DRs opened by Cal/Val Team)
- OMPS NP Yes
- KPPs
 - Imagery Yes
 - SST Yes
 - CrIMSS Yes
- Canary
 - Cloud Mask Yes
 - Aerosols Yes
 - OCC No (PCRs in work for Mx6)
 - CTT IP Yes
 - Veg Index Yes

- ✓ 14 km nadir spatial resolution
- ✓ 2200 km swath width
- \checkmark On-board internal calibration target

Band	Wavelen	gth Range	Sampling	No.
	(cm-1)	(mm)	(cm-1)	Chan.
SWIR	2155-2550	4.64-3.92	2.5	159
MWIR	1210-1750	8.26-5.71	1.25	433
LWIR	650-1095	15.38-9.14	0.625	713

Cross-track Infrared Sounder (CrIS)

Infrared Earth Spectra

National Environmental Satellite,

Data, and Information Service

NOAN

Advanced Technology Microwave Sounder (ATMS)

• Purpose:

National Environmental Satellite,

Data, and Information Service

Profiling atmosphere under All-weather conditions. In conjunction with CrIS, global observations of temperature and moisture profiles at high temporal resolution (~ daily)

• Predecessor Instruments: AMSU A1/A2, MHS

• Approach:

Scanning passive microwave radiometer 22 channels (23GHz - 183GHz)

• Swath width: 2300 km

• Co-registration: with CrIS

National Environmental Satellite, Data, and Information Service

Spectral Differences: ATMS vs. AMSU/MHS

		AMSU/MH	S	ATMS		
	Ch	GHz	Pol	Ch	GHz	Pol
	- 1	23.8	QV	1	23.8	QV
	2	31.399	QV	2	31.4	QV
	3	50.299	QV	3	50.3	QH
				4	51.76	QH
	4	52.8	QV	5	52.8	QH
	5	53.595 ± 0.115	QH	6	53.596 ± 0.115	QH
	6	54.4	QH	7	54.4	QH
⊿ -D	7	54.94	QV	8	54.94	QH
MS	8	55.5	QH	9	55.5	QH
٩	9	fo = 57.29	QH	10	fo = 57.29	QH
	10	fo ± 0.217	QH	11	fo±0.3222±0.217	QH
	11	fo±0.3222±0.048	QH	12	fo± 0.3222±0.048	QH
MHS	12	fo ±0.3222±0.022	QH	13	fo±0.3222±0.022	QH
	13	fo± 0.3222±0.010	QH	14	fo±0.3222 ±0.010	QH
	14	fo±0.3222±0.004 5	QH	15	fo± 0.3222±0.0045	QH
	15	89.0	QV			
	16	89.0	QV	16	88.2	QV
	17	157.0	QV	17	165.5	QH
	18	183.31 ± 1	QH	18	183.31 ± 7	QH
	19	183.31 ± 3	QH	19	183.31 ± 4.5	QH
	20	191.31	QV	20	183.31 ± 3	QH
				21	183.31 ± 1.8	QH

ATMS has 22 channels.

AMSU/MHS have 20, with polarization differences between some channels

- Quasi-Vertical: polarization vector is parallel to the scan plane at nadir
- Quasi-Horizontal: polarization
 vector is perpendicular to the
 scan plane at nadir

Only Polarization different

- Unique Passband
- Unique Passband, and Pol. different from closest AMSU/MHS channels

National Environmental Satellite, Data, and Information Service

NORA

Microwave Earth Spectra

ATMS Scanning Characteristics

89-GHz

160-183 GHz

2.2

1.1

Spatial Differences: ATMS vs. AMSU/MHS

89-GHz

160-183 GHz

Swath (km)

1.11

1.11

~2600

3.33

3.33

1.11

1.11

~2200

Beamwidth (degrees) Spatial sampling ATMS AMSU/MHS AMSU/MHS **ATMS** 23/31 GHz 1.11 23/31 GHz 5.2 3.3 50-60 GHz 1.11 2.2 3.3 50-60 GHz

1.1

1.1

Co-Registration of ATMS/CrIS Sensors

National Environmental Satellite, Data, and Information Service

Visible Infrared Imaging Radiometer Suite Raytheon SAS El Segundo, California

• Purpose:

Global observations of land, ocean, and atmosphere parameters at high temporal resolution (~ daily)

• Predecessor Instruments: AVHRR, OLS, MODIS, SeaWiFS

• Approach:

Multi-spectral scanning radiometer (22 bands between 0.4µm and 12µm) 12-bit quantization

• Swath width:

3000 km

Spatial Resolution

- 16 bands at 750m
- 5 bands at 325m
- DNB

VIIRS Spectral, Spatial, & Radiometric Attributes

		Band Wava		Horiz Sample Interval			Radi-	l turo or	Signal to Noise Ratio		
		No	longth	(km Downtrack x Crosstrack)		Driving EDRs	ance	Ttyp	or NEAT (Kolvins)		
		(um)		Nadir	End of Scan		Range		Required	Predicted	Margin
		M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	44.9	352	441	25%
			-			Aerosols	High	155	316	807	155%
		M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	40	380	524	38%
						Aerosols	High	146	409	926	126%
	les	M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	32	416	542	30%
ΡA	ioc					Aerosols	High	123	414	730	76%
ШХ		M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	21	362	455	26%
١ <u>۲</u>	ЫЧ					Aerosols	High	90	315	638	102%
S/	Ч	l1	0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22	119	146	23%
	lic	M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	10	242	298	23%
	ŝ					Aerosols	High	68	360	522	45%
		M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6	199	239	20%
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25	150	225	50%
		M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4	215	388	81%
						Aerosols	High	33.4	340	494	45%
C	CD	DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05	6	5.7	-5%
		M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4	74	98	32%
	Ē	M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6	83	155	88%
	R	13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3	6.0	97	1523%
IR	е.	M10	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3	342	439	28%
l₹	Ч	M11	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12	10	17	66%
S/	gO	14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K	2.500	0.486	415%
	H H	M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K	0.396	0.218	82%
ے ا	Ъ	M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K	0.107	0.063	69%
						Fires	High	380 K	0.423	0.334	27%
	F	M14	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270 K	0.091	0.075	22%
/IR	Ŷ	M15	10.763	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.070	0.038	85%
L L	>	15	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K	1.500	0.789	90%
	Б	M16	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.072	0.051	42%

Ozone Mapping Profiler Suite Ball Aerospace and Technologies Corp.

• Purpose:

Monitors the total column and vertical profile of ozone

- Predecessor Instruments: TOMS, SBUV, GOME, OSIRIS, SCIAMACHY
- Approach:

Nadir and limb push broom CCD spectrometers

• Swath width: 2600 km

Ultraviolet Solar and Earth Spectrum

Ozone Hole on September 24, 2006

Largest Ozone Hole 30 million km²

Area of North America 25 million km²

CERES Instrument Overview

CERES scanning radiometer measuring three spectral bands at TOA

- -Total (0.3 to >50 micron)
- -Shortwave (0.3 to 5.0 micron)
- -Longwave (5 to 50 micron)

Operations, data processing, products, and science are a continuation of experience is developed on

- TRMM – EOS Terra
- -EOS Aqua

Critical Resource Margins	CERES Value	Allocation	Margin	
Mass, kg	46.8	54	13.3%	
Power: Operational, Watts	45.85	50	8.3%	
Power: Peak, Watts	60	75	20.0%	
Power: Survival, Watts	39.5	40	1.3%	
Heat Transfer - Hot Case, Watts	4.1	±5 W	18.0%	
Heat Transfer - Cold Case, Watts	-1.7	±5 W	66.0%	
Data Rate, Kb / sec	10	10	0	
Pointing Control, arcsec	< 114	194	41.2%	
Pointing Knowledge, arcsec	< 107	180	40.6%	

Primary CERES Climate Data Records

Reflected Solar Energy

Emitted Thermal Energy

National Environmental Satellite, Data, and Information Service NPP Phases of Cal/Val: **Activities Through the Life of the Program**

Time	Pre-Launch	RDR Development and Verification	SDR Development and Verification	EDR Development and Verification EDR Verification and Initial Validation	
	Early Orbit Check-out	RDR On-Orbit Verification	SDR Verification, Tuning, and Initial Validation		
	Intensive CalVal	Establish Sensor Stability	SDR Validation	EDR Validation	
	Long-term Monitoring	Sensor Long-Term Monitoring	SDR Detailed Validation and Maintenance	EDR Detailed Validation and Correction & Improvement	

Product Chain

Example: VIIRS Cal/Val Activities by Phase

New Paradigm in NPP/JPSS Program

Advanced Calibration Methodology

- SI Traceable
- Cross calibration
- Global bias monitoring and instrument trending

• New Information from ATMS

- More channels @ O2 (51 GHz) and H2O (183+-1.8, 4.5 Ghz)
- ATMS Oversampling Data (30 km FOV) for severe weather

• Linkage of ATMS to AMSU-A and MSU

- MSU (4 channels)
- AMSU-A/MHS (15 channels)
- ATMS (22 channels)

• Expected Impacts from NPP Radiance Assimilation in NWP

- Three orbits Experiments
- Hyperspectral sounding Experiments

Unique Characteristics GPS RO Data

- (1) SI-traceable
- (2) Data error not affected by cloud and precipitation
- (3) High vertical resolution

(4) High consistency, data quality not affected by GPS receiver types does not decay with time no mission-dependent systematic bias (Hajj et al., 2004; Ho et al., 2009)
(5) Accurate temperature and pressure profiling within upper troposphere and stratosphere (Hajj et al., 2004) - 0.1K

Global and Monthly Mean Biases & Standard Deviations

Latitudinal-Dependence of Biases & Std.

Std.

STSDE

Skip top Navigation

National Environmental Satellite, Data, and Information Service

NORA

ATMS NEDT Analysis

NOAH

Microwave Temperature Sounding Vertical Resolution

AMSU Hurricane Intensity Estimation

• AMSU (blue) / GOES (dashed red) relative viewing geometry National Environmental Satellite, Data, and Information Service

NOAH

MSU/AMSU Derived Level 2 Atmospheric Temperature Trend in Past 30 years

Consistent Mid-Tropospheric Trend by Combining MSU and AMSU-A

MSU2/AMSU5—mid-tropospheric temperature

Multiple MSUs and AMSUs are cross-calibrated using Simultaneous Overpassing

From Cheng-Zhi Zou, 2010 NOAA CDR Workshop

Preparations for CrIS/ATMS

- BUFR proxy data, from NESDIS, archived at ECMWF since Feb 2011
- CRTM Fast RT model coefficients available based on rectangular band shapes
- Code to handle CrIS / ATMS lodged in JCSDA vapor
- Preliminary results generated from simulated data, as technical check-out of code
- Aim to provide feedback on data quality within days during :
 - early orbit check-out
 - subsequent commissioning phase IF data is available in BUFR format & data streams in place

CrIS simulated Brightness temperature

Continuity of Polar Operational Satellite Programs

Fiscal Year

As of January 14, 2011

51

National Environmental Satellite, Data, and Information Service

Three Orbital Planes are Needed to Cover the Globe Within NWP Analysis Cycle

Impact of Satellite Data in Forecast Skill

- 2007 ECMWF forecasting system,
- winter & summer seasons,
- Three experiments:
 - 1) no satellite data (NoSAT),
 - 2) NoSAT + 1 AMSU-A
 - 3) Control using all data
- ← 500 hPa *geopotential height* anomaly correlation

• NOAA is taking the lead for NPP/JPSS instrument CalVal

 JPSS program will provide well-calibrated radiances and well validated products

 Weather Forecast Models through CrIS, ATMS, VIIRS, OMPS
 Short term Environmental Observations (Events) VIIRS, OMPS, CrIS
 Long term Environmental Observations (Climate Change Detection) CERES, TSIS, VIIRS, OMPS, CrIS, ATMS

• NPP sensor proxy data (e.g. golden days, NWP BUFR) are made available for user preparation